零点定理例题(零点定理)

导读 你们好,我是九旅网的小编小九,零点定理例题,零点定理很多人还不知道,现在让我们一起来看看吧!1、设f(a)<0而f(b)>0定义集合A={x|f(x)<0...

你们好,我是九旅网的小编小九,零点定理例题,零点定理很多人还不知道,现在让我们一起来看看吧!

1、设f(a)<0而f(b)>0 定义集合A={x|f(x)<0, x∈[a,b]}, A是有界的,也是不空的,这样A有一个上确界ξ。

2、 然后先要证明 ξ∈(a,b),这个只需要考虑函数的连续性的定义,这是一个极限,f(a)<0和f(b)>0作为两个极限值,利用极限的性质就可以了 然后取A中的一列数{xn},令xn→ξ, (n→∞),由f(xn)<0知f(ξ)=limf(xn)≤0 最后说明不可能是 f(ξ)<0,因为根据f(x)在ξ的连续性,若f(ξ)<0,在ξ的一个邻域中都有f(x)<0,这与ξ作为A的上确界相矛盾 所以f(ξ)=0。

本文到此讲解完毕了,希望对大家有帮助。